“4 cùng” với Chênh Vênh
Cập nhật: 11:35 07/11/2013 GMT+7
(QT) - Không giống những lần trước, lần này khi xe chở đội trí thức trẻ tình nguyện (TTTTN ) mới đến đầu thôn Chênh Vênh, xã Hướng Phùng, Hướng Hóa (Quảng Trị), các cháu nhỏ ùa ra đón, có cháu còn cõng trên lưng em nhỏ chạy theo xe về tới nhà cộng đồng. Đón đội có ban cán sự thôn cùng rất đông người dân, những cái bắt tay thắm thiết, tiếng chào pị, pạ râm ran (tiếng Vân Kiều gọi pạ, pị nghĩa là bố, mẹ). Không khí thật vui, các em nhỏ đón đội TTTTN như đón anh, chị đi xa mới về; pị, pạ đón những ...
IGo4NuG6veG7j+G6r8Wpxak7NcO5xq9rxrDhu4/hu4E1MDXDoTbhur3hu7HDtMSpNTbhu7dyazbhurxqZ8O0ajbhu7Znw7RqIC9qODAgw7k24bq94buP4bqvxanFqTs1w7lK4buB4bqvw6o1MF3hu6TGryI2LTbhu4xq4bubw7TEqTbEqWvhu53DtMSpNsO0auG7tcO0xKk24buPxJHDtDbGsOG7p3dy4bq9ezbhu4/EkcO0NsO04bq3w4E24buNams2QeG7gTbhur1qdTbhur/hu59rNsaw4bunbDbGsGp44bq9Nsaw4bun4buFNsawbcO0ajbDtMSp4bupw4HDrcO0Nl3Gr8avxq/Gr8OUNiI2w7Vyazbhur9ow7Q24bq/xJHhu6k2xrBq4bubw7Q24bq8amfDtGo24bu2Z8O0ans2QcOiNkp3csO0xKk2w5lq4buxw7TEqXs2Sndyw7TEqTZK4buT4bqvNl3hu6Thu6nhurXDtMSpNsav4bunbiJ7NuG6veG6seG6vTbhur1q4bqx4bupNsO0auG7lzbhu7Hhuq824bun4bqvNuG6v+G7k8O0ezbhur3hu5M24bq9auG6seG7qTbhur3hu5nDtDbhur3GocO0xKk2xrDhu6dnw7Q24buPd8O0xKk24buBw7U2w7Rq4buXNuG6vWrhurPDgTbGsGrhu4Hhu5E2QeG7gTbhu7dpNsawcms2w7Rq4bq3NuG6veG7n8O0xKk24bq/4bujw7TEqX024bq+4buTw7Q24bq/4bufazbhur3hu5M24bq74bqvw7Q24bq94bqxw7Q2xanDvTbGsGrhu5vDtDbhur3hu7HDtMSpNuG7p2TGsDbhur/hu5vDtMSpNsO0xKl3c2s2w6pjw7R7NsO0auG7tcO0xKk24bq94bqxazbhurvhuqfGsDbGsOG6r8OBNsawauG6p8O1NsawamtoxrB7Nsawa2jDtMSpNuG6vWrhurfhu5E2w7luezbDueG6szbhu6djw7U24bun4bqvw7Q2Xcawa2jDtMSpNuG7tmPDtDbhu4xraeG7qTbEqeG7lWs2w7nhurN7NsO5bjbDtMSpasOz4bqvNuG7j+G6tzbhurvhu517NsO14buDIn024buMauG7m8O0xKk24buNamw2xrBqZcawNuG7t+G7qWt7NuG6veG6seG6vTbhu4HDtTbDtGrhu5c24bq/4buTw7Q24bq/4bufazbGr8avxq/Gr8OUNsO0anc24bq/4buTw7Q24bqvw7Rqezbhur1qbjbhur9rNkHhuq82w7Vyazbhu7dpPjbDuW57NsO54bqzNuG6v+G7k8O0NsO0auG7tcO0xKk24bq/eOG6rzbhur3hu5HDtDbhu49j4bupNuG7j+G6p8O1NuG7p+G7o2s2w7VyazbEqeG6qcO5ezbGsOG6r8OBNuG6u+G6p8awNsO14bqpxrA2w7V5w7TEqT424bq/4bufazbGr8avxq/Gr8OUNsO0anc24bq/d3Thur024bu3aTbhur1qbMO0ajbDtMSp4bubazbDtGrhurc2xrBqY8O0NsOBZ+G7qTbhur3hu6/huq82w7Vtw7RqNuG7t2XDgX024bq64bq14buRNsOUxKnhu5Xhur17NuG6v+G7n2s2w7lq4buTNuG6v+G7n2s2xq/Gr8avxq/DlDbhu43DrDw24oCc4buOxJHDtDbhur/EkeG7qTbhu41qazbhur9ow7Q24bu3cms2w6pjw7Q24bq74bq1w7R7NuG6veG6seG6vTbhur1q4burNuG6u+G7nzbhur/hu59rNsawam024bq/d3Thur024bq94bqx4bq9NuG6vWrhurHhu6k24bul4bupZMO0NuG7peG7qcOAxrB7NuG6veG7kzbhur1q4bqx4bupNuG6veG7mcO0NuG6vWrhurPDgTbhu6fhuq824bq/4bupNuG7j2fDtDbhur3hu6E24bq/w6w24bq/d3Thur024bq94bubw7TEqTbhu41nw7RqNuG7p+G7o2s24buN4buH4buRNuG7t2k2w7Rq4bq3NsO1bcO0ajZ1ezbhur3hu5nDtDbhur3hurHhur024bqvw7RqNuG6vWpuNuG6v+G7n2s2xq/Gr8avxq/DlDbGsGptNuG6vWpvNsO0amXDtDbhur93dOG6vTbDtGrhu7XDtMSpNuG6veG6sWs2w7RqbcO0NuG7j+G6szbhu4/hurnDtXs24buPZMO5NuG7j+G7kzbFqeG6r+G7qTbhu493w7TEqTbhurvhu502w7Xhu4M2auG7keG6qeG6vTbFqeG6r+G7qTbhur3hurHDtGo24bq94buz4bqvNsO0am3DtDbhu6fhuq97NuG6veG7kzbDteG7qeG7ncO0NuG6v2jDtDbEqcSRw7Q24bq94bqx4bq9NuG7gcO1NuG6vXbDtMSpNuG7jWrhu5vDtMSpNuG6v3d04bq9fX19NsOU4bqvw4E2xrBqbTbhu41q4bqx4bq9NuG7p+G7o2t7NsO14bq34bupNkHhuq/DtGo2xrBtw7RqNsO0xKnhu6nDgcOtw7Q24bq94buv4bqvNuG6v+G7n2s2xq/Gr8avxq/DlDbhur/DojbEqWvhurfDtGo24bq/d3Thur02xrBtw7RqNuG6veG6tcO1NuG7jWrhu5vDtMSpNsO0auG7tcO0xKk24bq94buv4bqvNuG6veG6seG6vTbhur1q4bqx4bupezbhur3hu6/huq82w7TEqXdzazbhu49yw7Q2xrDhu6fhu5HDtMSpNsawauG7m8O0NsO14bq3NsO0amTGsDbhu4/hurc24bq94bqx4bq9NuG6u+G6s8O0NsawauG6r8O0ajbDtGtnw7R7Nsaw4bun4buRw7TEqTbhur3hurHhur024bq/Z8O1NsSpa+G6r+G7kTbhu4934bupNuG7t+G6pcO0NsO0xKlqw6024bul4bupxJHDtDbhur1q4burw7TEqTbhu41oxrA2anTDuTbGsOG7qcOBZ8O0Nsaw4bun4bupw4Fpw7R7NuG7jWrhu5vDtMSpNsSpa+G6r8O0NsO0anc24bu3w7o2xrDhu6nDtMSpezbDteG7qeG7ncO0NuG7jWjGsDbGsGrhu6vhur024bq/aMO0NsO1ZMOBNuG7j8SRw7Q2w7VyazbDqnnDtMSpNuG7j+G6s2vigJ19IMaw4bqv4bq74buP4buBNsWpxrDDgeG7j+G7gTs1w7Xhuq/hu6fEqWvDtDw5w7lBNuG6r+G7qcaw4buRNTAgxrDhu6cwIMaww6owIGvDtcSpNsWp4bun4bq9OzUvL2t94bq74bqv4buR4bul4bup4bqvw7TEqcaw4buna33hu7fDtC/DtOG7geG7ucWpLzhhw6HDoS/DocOjw6rDoTg4YcOgw6HDoMaw4bqjw6HDoMSDxIPhu484fcOyw7nEqTU2LzAgL8aww6owIC/GsOG7pzAgxrDhu6cwIMaww6owIMO5MOG6vuG7n2s2xq/Gr8avxq/DlDbhur7hu5HhurfDtDbhu4zGry024bukw5k2YWHhuqM2xKlr4burw7k24bq74bq3NuG6veG7kcO0NsawauG7m8O0NuG6vGpnw7RqNuG7tmfDtGo2QWPDgTbDqsO9w7TEqTbDtOG7m8O0xKk2xrBq4bubw7Q2w7VyayAvw7kwIC/GsMOqMCAvxrDhu6cwIC/GsOG6r+G6u+G7j+G7gTDhu7Zjw7TEqTbhu49zazbhurrhurHhur02SuG7ozbDquG6s8OBPDbigJzDimPDtDbhu7dlw7Q24buNauG7h+G7kTbGsGptNuG7t2vDreG6vTbEqW024bq9dsO0xKk2xrBq4bq3w7RqNuG6veG7m8O0xKnigJ17NuG6v+G7n2s2xq/Gr8avxq/DlDbhur7hu5HhurfDtDbhu4xrw7RqNsawaC024buk4bup4bud4bq9NsO5auG7mcO0xKk2YWHhuqM2xrBqw73hur02amvDrcO0NuKAnMOhNuG6veG7scO0xKnigJ02XeG6veG7scO0xKk24bqlw7R7NuG6veG7scO0xKk2dXs24bq94buxw7TEqTbhu4/hurfDtXs24bq94buxw7TEqTbDtOG7k2s2xrBraMO0xKk2w6pjw7Q2xrDhu5/hur0iNuG7t3JrNuG6u+G6tzbhur3hu5HDtDbDqmPDtDbGsOG7n+G6vTbhu7Zjw7Q24buMa2nhu6l7NuG6v27huq824bq/a8Osw7U24bq/d3Thur02QeG6seG6vTbhur9uw7RqNuG7j+G6tzbGsGrhu5vDtDbhurxqZ8O0ajbhu7Znw7RqezbGsGrhu5vDtDbhu41q4buTNuG7jWrhuqXDtDbDtGpkxrA24bq94buv4bqvNkHDojbhurtrZ8O0NsSpa3JrNkp3csO0xKk2w5lq4buxw7TEqXs2w7Xhu5/GsDbGsOG7p+G7kcO0xKk2w7ThuqXDtTZBw6I24bq/4bqp4bq9NuG6u2vDrcawNuG7jWrhu5M24buNauG6pcO0NuG6u+G6p+G6vTbhu4xq4buBNsWo4bqvw7RqezZKd3LDtMSpNkrhu5Phuq99NuG7tnJrNsawZMawNuG6veG6tTbGsOG7p2s2xrBqeOG6vTbhur93dOG6vTZq4buV4bq9NnU2w7Rq4bq3Nsaw4bund3PDtMSpNuG6veG7scO0xKk24bu3cms2w7Rqa8OtxrA2auG7qcOBaMawNuG6veG7r+G6rzbGsOG7qeG7oWs2xrDhu6fhu4V7NuG6u+G6rcO0xKk2w7Rq4bu1w7TEqTbhu7drw63hur024buP4bq3w7U2xrBqa2jGsDbGsGrDveG6vXs24bq/4bufazbGr8avxq/Gr8OUNuG6v8OiNuG6veG7scO0xKk24bu3cms24bq74bq3NuG6veG7kcO0NsawauG7m8O0NuG6vGpnw7RqNuG7tmfDtGo2xrDhu6k2xanhu7Phuq97NsO0Y8O0xKk24bq9ZMO5NsO0auG6tzbhur3hu5/DtMSpNuG6v+G7o8O0xKl7Nsaw4bund3PDtMSpNsawa8Os4bupNmrhu5Xhur17NuG6v3dzw7TEqTbEqWvhuq/hu5E2xrBq4bubw7TEqTbhu49rZ8O0NsawauG7m8O0ezbhur3hu6HDtMSpNuG6vWrhurfhu5E24bu34bqlw7Q2auG7k+G6r3s24buP4bq3w7U2w7Xhu5s2am3DtGo24bu3d3PDtDbhu6fhuq/hu6k2xanhurPhur1qPjZqd3LDtMSpNsOq4bq5w7Q24buNxII2xrBq4bupZcawNuG6vWTDgXs24bq9auG6pcO1NsWp4buT4bq9NuG7j+G7q+G6rzbDtHdy4bq9Pjbhu41oxrA2anTDuTbhu7dyazbhurvDrcO0ajZB4bqxNuG7peG7qWPDtDbDqmPDtDbDgTbhu41q4bqxw7U24bq9auG7teG6rzbhurvDrcO0ans24bq9ZMO5NsawauG7qeG7neG6vTbhur1q4buRNuG6u+G6tzbhur3hu5HDtH02xq9raMO0NuG6v+G7nzbhur3hu5vDtMSpNuG7t2vDreG6vTbhu6dkxrA2w7Rq4bqvw7RqezbGsOG7keG6t8O0NuG6u+G7nzbhur/hu5HhurfDtDbhu7drZ8O0ezbGsGrhuq/DtGo2w7RrZ8O0NuG6veG7r+G6rzbGsGrhu5vDtDbhur9p4bupNsawauG6r8O1NsSpa+G6r3s24bq94bqx4bq9NsO14buDezbhur3hurHhur024bq9am42xrBqbTbhur934bqvNsO0d3Lhur17Nmrhu5Hhuq824bul4bup4bq1NuG7p+G6rzbhur/DrDbigJzGsOG6pcO0xKk24buPw73hur3igJ024bq9auG7kTbhur/hu5HhurfDtHs24bqvazbhur12w7TEqTbDuWpkw7Q24buNanVrNuG7t+G6tzbhu6dkxrA24bu34bupazbhu41qazbhur93dOG6vTbhur/hu5PDtMSpNsSp4buTw7k24bq94bubw7TEqTbFqXjhur024bq94buv4bqvNsO1bcO0ajbhur3hu7HDtMSpNuG7j+G6t8O1NuG6v+G7g8O5NuG6vWrhu5E2xrBq4bubw7R9NuG6vuG7n2s2xq/Gr8avxq/DlDbhur3hu5nDtDbFqeG6scO0xKk24buNa2jDtHs24bq9am824bu3cms2w7Xhu5/GsDbhur3hurFrNsO14bqxw4E2xrBsw7RqezbDteG7n8awNsO14bqxw4E24bq9amto4bupezbDtGrhu7XDtMSpNsawamtoxrA24bq7bjbhu6Xhu6nhu4HDtDbGsGrhu6nhu5/hur17NuG6u23DtGo2xrBqd3PDtMSpNuG6v+G7nWs24bu3cms2w7TEqXdzazbGsGpuNsawauG6t8O0ajbGsGptNnU24bq/Y8OBNsaw4bundTbhu49nw7Q2QeG6rzZBbzbhu7fhurc24bq/4buBw7U24buP4bqzazbDteG7k8O0NuKAnOG6v+G6qeG6vTbFqeG6tcO0Nsawa8O0ajbGsGrEkcO04oCdNuG6v+G7nWs24bu3cms24bq74bq3NuG6veG7kcO0ezbhur3hurHhur024bq74bup4buhazbhur1qa2jhu6k2w7lqa8O1NuG7t+G6tzbGsOG7qcOBZ8O0Nsaw4bun4bupw4Fpw7Q24bq74bqtw7TEqTbDteG6scOBNuG6vWpraOG7qTbhur93dOG6vTbhur/hu5vDtMSpNuG6v+G6teG7kTbhurvhurc24bq94buRw7Q2auG6seG7kTZqeOG6vTbhur/hu5PDtDbhur90a3s2w7RqZMawNuG7j+G6tzbDuWprw7U24bu3aTbhurrhurHhur02SuG7o3s24bu3aTbhur3hu6nhu5/hur024bq9amtow7Q2xrDhu6fhuq/DtGo24bq74bq14buRNuG7t8OtNsav4buhNuG7peG7qeG7neG6vTbhur3hu6/huq82w7RqY8O0NsOqY8O0Nsaw4bqvfTbhu47hu6PDtMSpNsSpauG7h8O5NuG7t3JrNuG6vWpraOG7qTbDuWprw7V7NuG6v+G7n2s2xq/Gr8avxq/DlDbhur/Dojbhu41oxrA2anTDuTZjw7U2xrBq4bqvw7RqezZqbcO0ajbhurXDtGo2xalrw7RqNuG6v+G7n8O0xKk24bq/w6w2xrDhu6nDgWfDtDbGsOG7p+G7qcOBacO0NuG7t2XDtDbhur/hu5/DtMSpNsO0xKl3c2s2w6pjw7Q24bu3aTbhu6Xhu6nDgTbGsOG6p+G6vTZ4w7TEqTZB4buzNuG6u2tnw7Q2xKlrcmt7NsO5auG7mcO0xKk24bq9auG7ncO0xKk24bq9auG6scOBNuG7t+G6tzbhurvhurXhu5E24bu3w6024bunecO0xKl7NuG7jEpKxKjhur57NuG6pcO0NnU2anTDuTbhu7fDrTbFqWvDtGp7NkFjw4E2w6rDvcO0xKk2xKlr4bqvNuG6v23DtGo24bu34bqlw7Q2auG7k+G6r319fTbGsGrhu6k2auG7q8awNsaw4bunZ8O0NmE3Nzbhu493dMawNsO0xKl3c2s2xrBq4buB4buRNsOqxqFrfTbGr+G7p+G7kcO0xKk24bq74bup4buhazbEqWvhuq/hu5E24buPd+G7qTbhu7fhuqXDtDbDtMSpasOtNuG6vWpr4bqvNsaw4bqvw4F7Nsaw4bund3XDtMSpNsawauG7m8O0Nkrhu6M24bu24bqlw7Q2xq/hu6fhu5k24bu34bupazbhu7fhu4U2w7RqZcO0NkHhu4fGsDw24oCcSuG6r2s2xrDhu6dlw7Q24bq7w6Lhu5E24buNauG7m8O0xKk2xrBq4bqnw7TEqTbDtOG7oWs2xal44bq9Nsaw4bun4buFNuG6veG7r+G6rzbhur/hu59rNsavxq/Gr8avw5Q24bq+4buR4bq3w7Q2YWHhuqM24bu34bq3NuG6vGprNuG6v+G7keG6t8O0NsawauG6r8O0ajbDtGtnw7Q2xrBq4bubw7Q24bq8amfDtGo24bu2Z8O0an02xq/hu6fhu5HDtMSpNuG7t+G7mcO0xKk2w7Xhu5/GsDbGsGrhurHDtMSpNsawauG7m2s2w7Xhurc24bq94bq1NsawauG7m8O0NsO0anc24bq/d3Thur02w7Xhuqnhur02xrDhu6dnw7Q2w7Vtw7RqNuG6vWpraOG6vTbhurHhu5E2w7Vya3s24bq94bqx4bq9NuG6vWrhurHhu6k24bq/aMO0Nsaw4bund3PDtMSpNuG7jWrhu5vDtMSpNsO5auG6tWs24bq/azbGsOG7p2fDtDbhur93c8O0xKk24buPxJHDgTbhu4/hu59rezbhur3hu5M2w7R3cuG6vTbFqeG6s+G6vWp7NsO0auG6tzbhu7fDrTbFqWvDtGo+NuG6u+G6tzbhur3hu5HDtDbDqmPDtDbhurvhurXDtDbhur3hu5M2w7Rq4bq3NsWpa8O0ajZq4buR4bqzxrA24bq94bufw7TEqTbhur/hu6PDtMSpNsawanHDtTbDteG7sWs2xKlwNsO1cmt9fX3igJ02xq95NsO0auG7tcO0xKk2auG7keG6s8awNuG6v+G7n8O0xKk2xrBqa2jGsDbGsGrDveG6vXs2xrBq4bupNmrhu6vGsDbhur93dOG6vTbFqcO9NuG7r8O0xKk2auG7n3s2xrDhurPhu5E2w7Xhu5VrNuG6v2tp4bupNuG7jWvDrcO0NsSpa+G7q8O5NuG6v8O6NuG6veG7r+G6rzbhur/hu5vDtMSpNuG6v+G6teG7kTbhurvhurc24bq94buRw7Q2w7RqY8O0NsOqY8O0ezbhur3hurHhur02xrDhu6E24bq9anjhur024bu34bq3NuG6vWpsw7RqNuG7peG7qcOBacO0NuG6v27huq82w7lqd3HDtMSpezbDtGrhu7XDtMSpNuG6v+G7k8O0xKk2xKnhu5PDuTbhur3hu6/huq82xq/Gr8avxq/DlDbhur7hu5HhurfDtDbhu4zGry3hu6TDmTZhYeG6ozbhur/Dojbhur/DrDbhu4/hurNrNsawbcO0ajbhur3hurXDtTbEqeG6p8O0NuG6u+G7kzbGsOG7ncawNuG6v+G7g8O5NuG7t3JrNuG6v27huq82w7lqd3HDtMSpezbhur/huqnhur024bq7a8OtxrA24buP4bq3NsO0xKl3c2s2w6pjw7Q2xrBq4bubw7Q24bq8amfDtGo24bu2Z8O0ans2xKnhu5PDuTbDuWrEkcO0NsSpa+G7tTbhu7fhu7XDtMSpNsO14budazbhu6Xhu6nhuq/DtDZqw6024bq/4buR4bq3w7Q24buNaMawNuG7peG7qWPDtDbDqmPDtDbhur3hurE2w7R3cuG6vXs2xrDhurPhu5E24bq/4bufw7TEqTbhu4/DveG6vTbGsGrhu6vhur024bq/w6nDgTbhur9u4bqvNsO5andxw7TEqTZBY8OBNsOqw73DtMSpNsO04bubw7TEqTbGsGrhu5vDtDbDtXJrfTbhurrhurdrezbhurXDtGo8Nsav4bumxJDDlDbDleG6ssOUSjZK4bq2IC/DuTA=